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Abstract. We show that autoregressive-conditional-heteroskedasticity (ARCH) models can encompass the
observed anomalous scaling properties of stock price dynamics remarkably well. We find that with a
suitable choice of parameters, simple ARCH models can reproduce the non-standard scaling behavior of
the central part of the probability distribution functions of stock prices at different time horizons, as
empirically found for the Standard & Poors 500 (S&P 500) index data, but fail to reproduce the shape of
the S&P 500 distribution, in particular at the smallest time horizon (1 min). A linear version of ARCH
processes, denoted here as LARCH models, still preserving the anomalies observed, permits to fit the 1 min
S&P 500 distribution more accurately.

PACS. 02.50.Ey Stochastic processes – 05.40.Fb Random walks and Levy flights – 87.23.Ge Dynamics
of social systems – 89.90.+n Other topics in areas of applied and interdisciplinary physics

Modelling the erratic evolution of stock prices by
using the concept of random walks (RW) initi-
ated about 100 years ago [1]. Nowadays, elaborated
RW models describing scenarios of variable volatil-
ity such as autoregressive-conditional-heteroskedasticity
(ARCH/GARCH) processes are widely used in finance
[2–8]. In recent years a great advance in our empirical
knowledge of the statistical properties of stock price vari-
ations has been achieved [9–16]; a prominent and intrigu-
ing feature is the anomalous scaling found near the central
part of the associated leptokurtic distributions as a func-
tion of the time horizon [11], imposing a severe constraint
to the existing RW models. It has been suggested that
truncated Lévy flights can account for these observations
[11], while the more traditional ARCH/GARCH processes
are believed to fail in that goal [12].

In this Rapid Note we show, in contrast to the present
belief, that ARCH processes can encompass the observed
anomalous scaling of stock prices remarkably well, con-
tributing to the extensively documented success of ARCH
processes in the financial literature [2–8]. We illustrate our
findings by considering the simplest model, an ARCH(1)
process. A linear variant of the latter, denoted here as
LARCH(1) process, is introduced in order to appropri-
ately fit the real market data. This study suggests that
ARCH-like processes may indeed contain some of the es-
sential features responsible for the scaling anomalies ob-
served in equity markets.
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We consider an uninterrupted stock market in which
the trading transactions of an equity (or an index) are
recorded trade-by-trade disregarding the time delay be-
tween two successive trading days due to overnight (or
holiday) inactivity. For simplicity, the elapsed time τ be-
tween trades is assumed to be constant, typically of the
order of few seconds. Once the trade-by-trade sequence
has been obtained, we can derive the resulting behavior
every m transactions, m > 1, corresponding to time hori-
zons ∆t = mτ . For convenience, the stochastic model we
consider is based on a discrete time random walk in a one-
dimensional lattice of equidistant sites, lattice constant `
and lattice size L, corresponding to a fully discrete price
dynamics.

The discrete coordinate i of the random walk repre-
sents the variation of the logarithm of the price Yn of an
equity at the nth transaction,

in ≡
1
`

[logYn − logYn−1] (1)

where ` plays the role of a tick size for price returns and
−L < in < L. In this case, the price YN after N transac-

tions is given by YN = Y0 exp(
N∑
n=1

in`). Since the results

are qualitatively equivalent for different values of `, we will
assume ` = 1 in what follows. We would like to note that
effects of discrete quotes on the dynamics of stock prices
have been studied recently, in which the obtained prices
are rounded afterwards, down for the bid and up for the
ask prices [17] (see also [18]).
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The rules of the random walk are simple. Let a par-
ticle (or random walker) be at site in after the nth step.
From site in, the particle can jump to another site j with
a probability Win→j ∝ exp(−Vj,in), where the ‘poten-
tial’ V is assumed to have a parabolic shape, Vj,in =
j2/(2σ2

n), characterized by an ARCH(1) square ‘volatil-
ity’ (cf. Ref. [2]) σ2

n = a + b i2n that depends on the lat-
tice position of the particle at site in, where a > 0 and
b ≥ 0. At the (n+1)th step, the particle moves to in+1

and a new potential Vj,in+1 takes place. Note that the
minimum of the potential Vj,i remains always at j = 0,
while its width, σi, depends on i. The process can be
simulated very efficiently since the transition probabili-

ties Wi→j = exp(−Vj,i)/
L∑

k=−L
exp(−Vk,i) need to be cal-

culated only once. This is due to the Markovian character
of the process. The new occupied site in+1 is obtained in
practice by taking a uniformly distributed random num-
ber, r, and choosing in+1 such that it is the maximum

value for which
in+1∑
j=−L

Win→j ≤ r holds.

The probability distribution function (PDF)
for the discrete variations i, P (i), of the process
discussed above obeys the self-consistent relation,

P (i) =
L∑

j=−L
Wj→i P (j), i.e.

P (i) =
L∑

j=−L

1
Sj

exp

[
− i2

2σ2
j

]
P (j) (2)

where Sj ≡
L∑

k=−L
exp[−k2/(2σ2

j )], σ2
j = a + b j2,

and P (i) is normalized such that
L∑

i=−L
P (i) = 1. The

continuum analog to equation (2) corresponds to a PDF
for continuous logarithmic price variations x [19]. For such
standard ARCH(1) process, one has σ2

n = a + b x2
n, with

an average variance σ2 = a/(1 − b). The resulting kur-
tosis, κ ≡

〈
x4
〉
/
〈
x2
〉2 = 3 + 6b2/(1 − 3b2), is finite for

b < 1/
√

3 ∼= 0.57735 (see also [20] for other exact results
obtained by mapping ARCH(1) models onto random mul-
tiplicative processes). In the discrete case, neither σ nor κ
can be obtained in a closed form since in general their val-
ues depend explicitly on the self-consistent solution P (i)
in equation (2). We have verified numerically, however,
that the condition b < 1/

√
3 yields a finite kurtosis for

discrete processes too. Note that in the case of constant
volatility, i.e. for b = 0, P (i) reduces to a Gaussian and
the prices Yn are log-normally distributed.

It is believed that ARCH/GARCH processes can fit
the PDF of stock prices quite well only at a given time
horizon, missing the observed anomalous scaling at differ-
ent time scales [11,14]. In what follows, we study the be-
havior of the ARCH(1) process at different time horizons

from an initial tick-by-tick series. Specifically, we perform
a trading simulation using the RW rules discussed above,
and generate a long trade-by-trade sequence {in} consist-
ing of N points. Then, we record the logarithmic price
changes every m trading transactions,

zk ≡ log Ykm − logY(k−1)m (3)

i.e. zk =
m∑
n=1

in+(k−1)m, where 1 ≤ k ≤ N/m and cal-

culate the corresponding PDF’s, Pm(z). The original dis-
tribution function P (i) corresponds in our new notation
to P1(z). The standard deviation and kurtosis associated
with Pm(z) will be denoted as σ(m) and κ(m), respec-
tively. We will also use the equivalent notation P∆t(z),
instead of Pm(z), and similarly σ(∆t) and κ(∆t), to em-
phasize the temporal scale or time horizon considered. In
finance, the quantity zk is also known as the temporal
aggregation of the process.

In the simulations, we have taken N = 2.5× 1010 and
chosen the lattice size L sufficiently large so that the RW
never touches the boundary. We have studied different
sets of values (a, b), as discussed in more detail below.
For instance, the set (0.140, 0.577) yields σ(1) ∼= 0.3841
and κ(1) ∼= 110. Both, σ(m) as well as the kurtosis κ(m),
change as a function of m. We find that κ(m) decreases
rapidly to about 48 for m = 10, while reaching values of
the order of 3 (Gaussian behavior) for m ≈ 103–104, as
observed in real world data for long time horizons [21].
This clearly indicates that the associated PDF’s are not
stable; their shape depend on m and tend to the Gaussian
shape for asymptotically largem. We find, in fact, that the
variance σ2(m) behaves normally, i.e. σ2(m) = m σ2(1).

To proceed further, we follow Mantegna and Stanley
[11] and look next at the central part of the distributions,
Pm(0), yielding the probability that the temporal aggre-
gation z takes the value z = 0 after m transactions, i.e.
when the price of the equity at the (n+m)th transaction
Yn+m = Yn. The quantity Pm(0) is expected to decrease
as m increases; in the language of RW it is known as the
probability of return to the origin, representing the prob-
ability that after m steps the RW is back at its starting
point at z = 0.

In the case b = 0, the variance of the ARCH pro-
cess is constant at each transaction event (σ2

n = a) and
Pm(0) ∼ m−1/2. For b > 0, the variance σ2

n = a+ b i2n can
fluctuate considerably, since in principle the RW can reach
large values of |in|. This model describes quite well the ob-
served variations in the volatility in equity markets. The
question is whether for finite b, the behavior of Pm(0) may
depart from its standard one as in the case of real market
data. A prominent example for the latter being the PDF
obtained at intervals of one minute, i.e. for time horizons
∆t0 = 1 min, for the Standard & Poor’s 500 (S&P 500)
economic index by Mantegna and Stanley [11], displaying
an anomalous decay, P∆t(0) ∼ (∆t)−0.7, over three orders
of magnitude in ∆t.

To answer the above question, we have first performed
calculations for the case a = 0.4 and b = 0.2 < 1/

√
3,
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Fig. 1. Scaled plot of the probability of return to the origin
Pm(0)/Pm0(0) vs. m/m0, for discrete ARCH(1) processes with
a = 0.4 for b = 0.2 (full circles) with m0 = 1, and for b = 1.2
(full squares) with m0 = 2. The straight line has the slope
−0.7, the dashed line the slope −0.5 and are included as a
guide.

and plotted the resulting values of Pm(0) as full circles in
Figure 1. The dashed line has the slope −0.5, indicating
standard behavior of Pm(0) in this case.

A quite different outcome emerges when the parameter
b is increased further. We have considered values of b close
and larger than 1, for which the second moment of the dis-
tribution diverges. The distribution remains normalizable
as long as b < 3.6377 [19] (see also [20]). The results for
Pm(0) in the case b = 1.2 are plotted as full squares in
Figure 1. Their power-law decay is consistent now with
an anomalous exponent of about −0.7, over three orders
of magnitude in m, in remarkable agreement with the de-
cay observed in real data. Similar results are obtained for
other values of b, but the anomalous regime with expo-
nent −0.7 shrinks as b becomes smaller and Pm(0) crosses
over the standard decay at large m. The latter crossover
resembles the behavior of truncated Lévy flights [11] and
of ARCH processes generated with a truncated Lévy dis-
tribution (instead of the usual Gaussian one) [22].

These interesting findings for ARCH(1) processes,
however, can not be easily reconciled with the real mar-
ket data. In fact, for b = 1.2 the ARCH PDF can not
fit the (1 min)-S&P 500 PDF characterized by a finite
kurtosis, κ ≈ 30 [11]. It is interesting to note, how-
ever, that the simple modification of the variance from
the quadratic relation σ2

n = a + b i2n, to the linear form
σn = a′ + b′ |in|, leads indeed to a sensitive improvement.
Such a linear regression model may be denoted as linear
ARCH(1), or LARCH(1) process. We have considered the
values a′ = 0.379 and b′ = 0.745, for which P1(z) attains
a standard deviation σ(1) ∼= 0.6591 and a finite kurtosis
κ(1) ∼= 200. For the continuum model, the latter is finite
for b′ < 3−1/4 = 0.75984 [19].

For the sake of comparison with real market data, we
now use the notation P∆t(0), and plot our results in the
normalized form P∆t(0)/P∆t0(0), with ∆t0 = m0τ , as a
function of ∆t/∆t0 = m/m0. These are shown in Figure 2,
together with the analysis of the Standard & Poor’s 500
(S&P 500) economic index of Mantegna and Stanley [11]
for which ∆t0 = 1 min.

The LARCH results for P∆t(0) at different time hori-
zons are displayed by the full triangles in Figure 2, where
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Fig. 2. Scaled plot of the probability of return to the origin
P∆t(0)/P∆t0(0) vs. ∆t/∆t0 for a LARCH(1) process, where
∆t = mτ and ∆t0 = 1 min. The LARCH(1) process (full tri-
angles) was simulated for the values a′ = 0.379 and b′ = 0.745.
Here, we have used m0 = 8, i.e. τ = 7.5 seconds, and found
σ(1) ∼= 0.6591. The present results are compared to the corre-
sponding analysis of the S&P 500 data for the time horizons
in the range 1 min ≤ ∆t ≤ 103 min (open circles) [11]. The
straight line has the slope −0.7, the dashed line the slope −0.5
and are included as a guide.
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Fig. 3. The LARCH(1) PDF P∆t0(z) vs. z/σ(∆t0) (full
squares), for ∆t0 = m0τ = 1 min, with m0 = 8 and τ =
0.125 min, for the set a′ = 0.379 and b′ = 0.745, where
σ(∆t0) ∼= 0.6591

√
8 ∼= 1.8641 and κ∗(∆t0) ∼= 32. For com-

parison, the probability distribution function of the changes
of the S&P 500 index (open circles), recorded at intervals of
one minute over the period from January 1984 to Decem-
ber 1989, is shown [11]. The reported value κ∗(∆t0) ∼= 32,
represents an effective kurtosis obtained for values of z in the
range |z/σ(∆t0)| ≤ 18, i.e. those covered by the S&P 500 data.
If we take our full range of values |z/σ(∆t0)| ≤ 500, we find
κ(∆t0) ∼= 115.

m0 = 8 and τ = 7.5 seconds. As it is apparent from the
figure, the LARCH values seem to follow the empirical
data over the full range of time scales up to ∆t ∼= 103 min
(m ∼= 104), still displaying a weak departure from the
anomalous value −0.7 at larger time scales, indicating the
presence of the crossover to standard decay at larger time
horizons. The use of GARCH(1,1) models [3], for which
σ2
n = a + b x2

n + c σ2
n−1, may improve the fit to some

extent, in particular in combination with its linear form,
σn = a+ b |xn|+ c σn−1. This will not be pursued further
here.

In the following, we remain within the context of the
LARCH(1) process and proceed by looking at the distri-
bution function P∆t0(z) corresponding to the time delay
∆t0 = 1 min, for the choice a′ = 0.379 and b′ = 0.745
used above (cf. Fig. 2). The results are plotted in Figure 3
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Fig. 4. Scaling plot of the LARCH(1) probability distribution
function P̃∆t(z) ≡ P∆t(z)/[∆t/∆t0]−0.7 vs. z̃ ≡ z/[∆t/∆t0]0.7,
for several values of ∆t = mτ (∆t0 = 1 min), with τ =
0.125 min and m = 10 (full triangles), 32 (full squares), 100
(full diamonds), 316 (full stars) and 1000 (full circles).

together with the S&P 500 PDF obtained at intervals of
1 min [11]. The set of parameters (a′, b′) employed seems
appropriate since P∆t0(z) reproduces rather well the shape
of the 1 min S&P 500 PDF.

To further assess the validity of our results, we inves-
tigate the scaling behavior of the PDF’s at different time
horizons (cf. Fig. (1c) of Ref. [11]). In Figure 4, we show
the scaled quantity P̃∆t(z) ≡ P∆t(z)/[∆t/∆t0]−0.7 as a
function of z̃ ≡ z/[∆t/∆t0]0.7. The data collapse found
for the central parts of the PDF’s for time horizons in the
range 1 min < ∆t < 103 min, corresponding to trading
sequences of length m0 ≤ m ≤ 104, supports the expected
scaling behavior. The scaling, however, is not exact since
the PDF’s are not stable, the largest discrepancies are
clearly observed at their tails.
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